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General roadmap: Al-aided design

We have: powerful Goal: Customizable
generative models designs!




Examples - Images

Pre-trained

generative models

Images customized on their
Fine-tuning aestheticness, layout or
compressibility




In this work, our objective is
different from merely optimizing
towards certain rewards!



Standard fine-tuning: towards reward
models

Pre-trained
generative
models

Fine-tune
towards aesthetic
socres




Our task 1s different, and harder
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Examples — Sequence design
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Why our task is important?

Also active In
other cell lines,
no specificity

Condition on
high activity
level in HepG2

Expression level

Can achieve
specificity!

If we can add
“conditional control”
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One denoising step

Denoising process:
generation




How to train diffusion models?

Data:

S Many x;, following

Reverse / Denoising process pPTe (x)

Sample noise pr(X7) = turn into data

Pr(Xr)~N(0J). :

Pure
noise

= . Learn 6 from data,




Our goal: adding control via fine-tuning

@etrained conditional diffusion: p(xl&

c: prompt

Fine-tuned model: p(xlc,h
Conditioned § poesmr gun
oncandy [ GRS ks

RL
fine-tuning

Data: {xﬂ, Cg» yﬂ}}

E.Q.
y: compressibility score

y:
Low-to-high




Our goal: adding control via fine-tuning

Q: how to set the
objective function
for optimization?

c: prompt

‘ o RL
/ fine-tuning
\

y: compressibility score




Methodology

C: pro:np.t"
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Reward collapse

snail octopus cheetah hippopotamus

« Very common in generative systems (DMs, LLMs, GANSs)
 Generations have low diversity
 Because the oracle is “over-optimized”



Methodology — Cont.

Pretrained conditional diffusion: ‘\

C: pro:np.t"

Data:
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Y.

compressibility

Train a
classifier:

p*Oyix,c)

RL

Objective func:

log p°(y|xr,c) — KL(p||pP"®)
/\

/

KL avoids being too
far from the pre-
trained model!




Theoretical justification (incomplete)
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In fine-tuning

Objective func:
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ylogp(y|xr,c) — KL(p||pP"®)
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Example 2:

Advantage: leverage conditional independency
{ Example 1. Y L C'| X 1Y |C,Xand¥; LC|X and
,1C|X

end to
‘ multl -task l
{ p°(ylx,c) = p°(¥lx) _ 108P (y1,¥21%,€) = logp° (y41%) +logp°(szX)}

Classifier-free
baseline needs (x,c,y)
and (x,c,yl, y2)!

We only need (x,y,) and
(x,y2) data.

{ We only need (x, y) data.




Experiments

|

Example1: Y L C | X

v

. Make 4 levels of

compressibility
Add compressibility as
an additional control to
Stable Diffusion

We validate
both examples!
—

Example 2:

11.|C,XandY; LC|X and

Y, LC|X

v

Y;: compressibility, Y,: aesthetic scores

1. Both scores are divided into 2 levels.

2. Together it reduces to a 2X2 multi

/

N task generation.

)




Example 1. Compressibility
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More Qualitative Results

i il L Butterfly ~ Peacock Panda

Figure 4: More images generated by CTRL in the compressibility task.



Example 2: Compressibility & Aestheticness

High Low
compressibility aestheticness

compressibility

High
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More Qualitative Results

Cat Dog Horse Monkey Rabbit Butterfly Peacock Panda
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Figure 5: More images generated by CTRL in the multi-task conditional generation.



Extension: adding condition

on a continuous y

Generated Values

Parity Plot for Continuous Conditioning on Compressibility
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Compare with baselines

« Classifier guidance:

N ifi Table 1: Comparison between our proposal and existing approaches. In contrast to classifier guidance
tralnlng a CIaSSIerr or its variations, our method entails re-training the models directly on top of pre-trained models
and InCOrpOI‘a'[Ing |tS (i.e., fine-tuning). Additionally, we circumvent the necessity of learning a mapping x; — y or

i i employing heuristic approximation techniques to address this issue. Compared to classifier-free
_g rad IentS to g_UIde guidance which always demands triplets {¢, x, y}, our method can leverage conditional independence
Inference (Whlle and only necessitate pairs {z, y} by leveraging if 3y | ¢|z holds. This simplifies the construction of

. . everaging

mOde|S) Mecthods Finc-tuning Need to leamn conditional

Ty Y .
- independence
. CI aSSifi er-free %gslmﬁcr guidance (Dhariwal and Nichol. No Yes Yes
I  di construction guidance (e.g. (Hoetal., 2022
g u |d ance: dlrectly Reconstruction Du1d‘m.cc (e.g. (Hoetal., 2022), No No Yes
.. (Chung et al., 2022), (Han et al., 2022))
COﬂdItIOﬂS the Classifier-free guidance (Ho and Salimans, )
. 2022 Yes No No
generative process on 2022
both data and CTRL (Ours) | Yes No Yes

context, bypassing
the need for explicit
classifiers.



Conclusion

* We introduce an RL-based fine-tuning approach for
conditioning pre-trained diffusion models on new additional
labels.

« Compared to classifier-free guidance, our proposed
method uses the offline dataset more efficiently and allows
for leveraging the conditional independence assumption,
thereby greatly simplifying the construction of the offline
dataset.

« We also theoretically justify our approach and build the
connection with classifier-based guidance.
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