Adding Conditional Control to Pretrained Diffusion Models: A Reinforcement Learning Approach

Yulai Zhao Intern at DELTA, BRAID Mentored by Ehsan Hajiramezanali, Masatoshi Uehara, Gabriele Scalia

July 29th, 2024

Acknowledgements

 A preprint paper is released at https://arxiv.org/abs/2406.12120

"Adding Conditional Control to Diffusion Models with Reinforcement Learning"

 Authors: Yulai Zhao*, Masatoshi Uehara*, Gabriele Scalia, Tommaso Biancalani, Sergey Levine, Ehsan Hajiramezanali

General roadmap: Al-aided design

Examples - Images

In this work, our objective is different from merely optimizing towards certain rewards!

Standard fine-tuning: towards reward models

Pre-trained generative models

Improved aestheticness

Fine-tune towards aesthetic socres

Our task is different, and harder

Adding a new condition!

All generated by one model!

Arbitrary compressible levels

Examples – Sequence design

DNA enhancers

Goal: Highly active in just one cell line

Why our task is important?

Contents

- 1. Background: fine-tuning diffusion models
- 2. Methodology of this work
- 3. Experimental results

Diffusion Models

Forward process: adding noise

Denoising process: generation

How to train diffusion models?

Denoising process:

$$d x_t = f(t, x_t, \theta) + \sigma dw_t$$

Goal:

Learn heta from data, such that $x_T \sim p^{pre}$

Our goal: adding control via fine-tuning

Our goal: adding control via fine-tuning

Methodology

Reward collapse

- Very common in generative systems (DMs, LLMs, GANs)
- Generations have low diversity
- Because the oracle is "over-optimized"

Methodology – Cont.

Theoretical justification (incomplete)

Advantage: leverage conditional independency

Experiments

Example 1: $Y \perp C \mid X$

Example 2: $Y_1 \perp Y_2 \mid C, X \text{ and } Y_1 \perp C \mid X \text{ and } Y_2 \perp C \mid X$

We validate both examples!

- 1. Make 4 levels of compressibility
- 2. Add compressibility as an additional control to Stable Diffusion

 Y_1 : compressibility, Y_2 : aesthetic scores

- L. Both scores are divided into 2 levels.
- 2. Together it reduces to a 2X2 multitask generation.

Example 1: Compressibility

	Accuracy ↑	Macro F1 score ↑	Y=3
DPS	0.45	0.44	
CTRL (Ours)	1.0	1.0	

(b) Evaluation of conditional generations

more compressible

(c) Generated images

More Qualitative Results

Figure 4: More images generated by CTRL in the compressibility task.

Example 2: Compressibility & Aestheticness

More Qualitative Results

Figure 5: More images generated by CTRL in the multi-task conditional generation.

Extension: adding condition on a continuous **y**

Compare with baselines

- Classifier guidance: training a classifier and incorporating its gradients to guide inference (while freezing pre-trained models)
- Classifier-free guidance: directly conditions the generative process on both data and context, bypassing the need for explicit classifiers.

Table 1: Comparison between our proposal and existing approaches. In contrast to classifier guidance or its variations, our method entails re-training the models directly on top of pre-trained models (i.e., fine-tuning). Additionally, we circumvent the necessity of learning a mapping $x_t \to y$ or employing heuristic approximation techniques to address this issue. Compared to classifier-free guidance which always demands triplets $\{c, x, y\}$, our method can leverage conditional independence and only necessitate pairs $\{x, y\}$ by leveraging if $y \perp c|x$ holds. This simplifies the construction of the offline dataset.

Methods	Fine-tuning	Need to learn $x_t \to y$	Leveraging conditional independence
Classifier guidance (Dhariwal and Nichol, 2021)	No	Yes	Yes
Reconstruction guidance (e.g. (Ho et al., 2022), (Chung et al., 2022), (Han et al., 2022))	No	No	Yes
Classifier-free guidance (Ho and Salimans, 2022)	Yes	No	No
CTRL (Ours)	Yes	No	Yes

Conclusion

- We introduce an RL-based fine-tuning approach for conditioning pre-trained diffusion models on new additional labels.
- Compared to classifier-free guidance, our proposed method uses the offline dataset more efficiently and allows for leveraging the conditional independence assumption, thereby greatly simplifying the construction of the offline dataset.
- We also theoretically justify our approach and build the connection with classifier-based guidance.

Thank you!

