Genentech

A Member of the Roche Group

Berkeley

Adding Conditional Control to Diffusion
Models with Reinforcement Learning

Yulal Zhao*, Masatoshi Uehara*, Gabriele Scalia, Sunyuan Kung,
Tommaso Biancalani, Sergey Levine, Ehsan Hajiramezanali



Acknowledgements

» Accepted at ICLR 2025. Paper is released at
https://arxiv.org/abs/2406.12120

» GitHub repo: https://github.com/zhaoyl18/CTRL

* This work was done when Yulal Zhao was a research intern at
Genentech.


https://arxiv.org/abs/2406.12120

General roadmap: Al-aided design

What we have:
powerful generative
models

Goal: Customizable
designs!
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Standard fine-tuning: towards reward model

Pre-trained
generative
models

Fine-tune
towards
aesthetic socres




Our task 1Is different, and harder
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Examples — Sequence design

Expression level
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Condition on
high activity
level in HepG2

Add “conditional
control”

Expression level

Also active In
other cell lines,
no specificity

Can achieve
specificity!




Contents

. Background: fine-tuning
diffusion models

. Methodology of this work
. Experimental results




o)

Diffusion Models Forward process:

adding noise
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How to train diffusion models?

Data:
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Our goal: adding control via fine-tuning

Pretrained conditional diffusion: p(x|c)

C: prompt

Datas {{xi,, Cg, yi}

y: compressibility score

RL
fine-
tuning

Fine-tuned model: p(x|c,y)

Conditioned
on ¢ and

Low-to-high




Our goal: adding control via fine-tuning
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Q: how to set the
objective function
for optimization?
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Methodology

/ Pretrained conditional diffusion: p(x|c) \
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Reward collapse

snail octopus cheetah hippopotamus

1. Very common in generative systems (DMs, LLMs, GANSs)
2. Generations have low diversity
3. Because the oracle is “over-optimized”




Methodology — Cont.

/ Pretrained conditional diffusion: p(x|c) \

c: prompt

y:
compressibility/
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Train a classifier:
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Theoretical justification (incomplete
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In fine-tuning
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Advantage: conditional independency
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Example 2:
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Experiments

4 )
. Example 2:
Example 1:Y 1 C | X Y, LY,|C,XandY; L C|X and
21C|X g
M Both examples M
are validated!
/1' Make 4 le_ve_l_s of Y;: compressibility, Y5: aesthetic scores
compressibility
2. Add compressibility as 1. Both scores are divided into 2 levels.
an additional control to 2. Together it reduces to a 2X2 multi-
' ' task generation.
_ Stable Diffusion y \_ .




Compare with baselines
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Example 1: Compressibility
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More Qualitative Results

Cat Dog Horse Monkey Rabblt Butterﬂy Peacock Panda
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Figure 4: More images generated by CTRL in the compressibility task.



Example 2: Compressibility & Aestheticness
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More Qualitative Results

Cat Dog Horse Monkey Rabbit Butterfly Peacock Panda

Figure 5: More images generated by CTRL in the multi-task conditional generation.



Extension: ada ding

condition on continuous y

Generated Values

Parity Plot for Continuous Conditioning on Compressibility
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Conclusion

* We introduce an RL-based fine-tuning approach for conditioning pre-
trained diffusion models on new additional labels.

* Compared to classifier-free guidance, our proposed method uses the offline
dataset more efficiently and allows for leveraging the conditional
Independence assumption, thereby greatly simplifying the construction of
the offline dataset.

* We also theoretically justify our approach and build the connection with
classifier-based guidance.



Future work

* Extending this work to biological sequence design, such as DNA enhancers
and RNA 5’UTR.

* The high-level goal is to achieve cell-specific promoter design.



Thank you!
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