
Can Learned Models Replace Hash Functions?

Presenter: Olga Solodova,Yulai Zhao

April 26th, 2024

Motivation + Summary

● Hash functions are used to store and retrieve data
from a hash table; data ‘key’ is hashed and the value
of the hash determines the position of the data in the
table
○ Numerous applications and usages across

computer science, particularly important for
database management

● This work studies if using learned models instead of
traditional hash functions can reduce collisions and
whether this translates to improved performance,
particularly for indexing and joins. They show that
learned models reduce collisions in some cases,
which depend on how the data is distributed.

Traditional Hash Functions

Traditional hash functions ℎ(𝑥) : 𝑋 ↦ 𝑈 attempt to map arbitrary inputs to independent and
identically distributed (i.i.d.) uniform random outputs.

● True randomness is not feasible in practice
● Quality typically measured by number of collisions that occur (this affects the efficiency of

insertion/queries/etc)
● Important that hashing operation is efficient

Examples of traditional hash functions:

● Multiplicative Hashing (MultiplyPrime)
● Fibonacci Hashing (FibonacciPrime)
● Murmur Hashing (Murmur)
● XXHash
● AquaHash

Learned models as hash functions

Idea: use a model F to approximate the CDF of the data (i.e. the keys) and use
h(Key) = F(Key) * M as the hash function, where M is the size of the hash map

● If the model F perfectly learned the empirical CDF of the keys,
no conflicts would exist.

● Model should be small and efficient to execute

Learned models as hash functions

Recursive model index (RMI)
(Kraska et. al. 2018)

Objective:

● 2 layers of recursion used
● Linear models perform best

Learned models as hash functions

Piecewise Geometric Model index
(PGM-index) (Vinciguerra et. al. 2019) and
RadixSpline (Kipf et. al. 2020):

● Provide error-bounded
approximations to the CDF

○ PGM-index does this with
recursive piecewise linear
regression

○ RadixSpline does this via its
spline-building algorithm

● Initialized with one pass through the
data

○ PGM index work per element is
logarithmic in number of layers

○ RadixSpline work per element is
constant

Perfect Hashing

● Perfect hash functions: function is injective, mapping set of inputs into a range
[0,N] (equivalently, the hash function achieves no collisions)
○ Minimal perfect: perfect + bijective (i.e. hash table has minimal size)
○ Order-preserving: order in the keys is preserved in the hashed values

● Building a MPHF requires knowing the dataset a-priori
● MPHF require O(n) time to build and are not easily updated, often requiring a

full rebuild upon insertion
● Examples:

○ RecSplit (MPHF)
○ AWHC (OMPHF)

Hashing Schemes: Resolving Collisions

● Bucket chaining
● Open addressing

○ Linear probing
○ Cuckoo hashing

Collisions analysis for Hashing

● Notation: for the task of mapping 𝑁 keys to 𝑁 locations
● Assume that we apply a hash function 𝑓 on the keys, where 𝑓 could

be a traditional hash or a LMH function. Let 𝑥_0,𝑥_1,...,𝑥_𝑁−1 be the
sorted array
○ Let 𝑦_0,𝑦_1,...,𝑦_𝑁−1 be the sorted array of the hashing outputs

𝑓(𝑥_0), 𝑓(𝑥_1),..., 𝑓(𝑥_𝑁−1).
○ The gaps of the sorted output: 𝑔_0, 𝑔_1, 𝑔_2,... are defined as

the difference between consecutive {y_i}

Collisions analysis for Hashing: Main lemma

● Main lemma states that: the expected number of colliding keys is
expressed with PDF and CDF of the gap distribution.
○ LMH: more uniform gaps lead to fewer collisions.
○ Traditional Hash Functions: when distributing keys uniformly, are

expected to create gaps following an exponential pattern, influencing
collision rates.

● LMH Efficiency: Number of submodels in an LMH like RMI impacts
accuracy but not necessarily collision rates.

Experiment evaluation

● Main goal: to validate what are the main workload characteristics,
scenarios, and operations where employing LMH functions would
improve performance?

● Comparisons conducted across 4 aspects
○ Collisions and computation time tradeoffs
○ Usability of basic operations (e.g. lookup and insertion)
○ Other systematic metrics, e.g. construction time
○ High-level operations (range queries and non-partitioned hash join)

Experiment evaluation: Setup

● Datasets
○ 4 Real dataset: Facebook user IDs (fb), Wikipedia edit timestamps (wiki), Open

Street Map cell IDs (osm), and Amazon book popularity keys (book) from the SOSD
benchmark, each with 200 million keys.

○ 4 Synthetic dataset: Sequential keys with regular intervals and deletions (gap_10),
uniformly random keys (uniform), and keys from normal and lognormal
distributions.

● Metrics: computation throughput (operations per second) and collisions (proportion of
colliding keys).

● Methods
○ Traditional Hash: Multiplicative Hashing (MultiplyPrime), Fibonacci Hashing

(FibonacciPrime), Murmur Hashing (Murmur), XXHash, AquaHash
○ Learned Models: RMI, RadixSpline, PGM, perfect hashing: MWHC, RecSplit

Experiment evaluation: Collisions and computation time tradeoffs

● Focus: the balance between hash function efficiency and quality!

Experiment evaluation: Hash Table Performance - Probing

● A main hash table operations: probing.

Experiment evaluation: Hash Table Performance - Insertion

● Another main hash table
operation: insertion.

Experiment evaluation: High-level operation - Range queries

● How to implement ‘’range queries"
using Hash tables?
○ “monotonic” LMH functions like

RMI and RadixSpline can be
combined with bucket chaining.

Experiment evaluation: High-level operation - Hash-based Join

● Non-Partitioned Hash Join (NPJ)
is a method used in database
management systems to join
two tables.

Conclusion

● Gap Distribution: Evenly spaced gaps in sorted input keys result in fewer
collisions for LMH functions.

● LMH Performance: RMI generally offers the best tradeoff between throughput and
collision rates, while RadixSpline performance drops with skewed datasets.

● Hash Table Throughputs: LMH functions show improved probe and insert
throughputs with bucket chaining; this advantage diminishes with cuckoo
hashing.

● Mixed Workloads & NPJ: Monotonic LMH functions are effective for mixed
workloads and NPJ when combined with bucket chaining, with RMI-CHAIN being
the most efficient.

Future Work

● Multi-threaded implementations of LMH, perfect, and traditional
hash tables have yet to be explored.

● Investigating complex models like decision trees and neural
networks could reveal new efficiency tradeoffs.

References
[1] Tim Kraska, Alex Beutel, Ed H. Chi, Jeffrey Dean, and Neoklis Polyzotis. The Case for Learned
Index Structures. In SIGMOD, page 489–504, 2018.

[2] Andreas Kipf, Ryan Marcus, Alexander van Renen, Mihail Stoian, Alfons Kemper, Tim Kraska, and
Thomas Neumann. RadixSpline: A Single-Pass Learned Index. In Proc. of aiDM@SIGMOD, 2020

[3] Paolo Ferragina and Giorgio Vinciguerra. The PGM-Index: A Fully-Dynamic Compressed Learned
Index with Provable Worst-Case Bounds. Proc. VLDB Endow., 13(8):1162–1175, 2020.

[4] Emmanuel Esposito, Thomas Mueller Graf, and Sebastiano Vigna. Recsplit: Minimal perfect hashing
via recursive splitting. In 2020 Proceedings of the Twenty-Second Workshop on Algorithm Engineering
and Experiments (ALENEX), pages 175–185. SIAM, 2020.

[5] Bohdan S Majewski, Nicholas C Wormald, George Havas, and Zbigniew J Czech. A family of perfect
hashing methods. The Computer Journal, 39(6):547–554, 1996.

Discussion Questions

● Given that learned models can reduce collisions in hash functions for certain
datasets, what are the potential benefits and challenges of integrating these
models into traditional database systems?

● Besides training to approximate the CDF of the data, are there other objectives
that could be used to train a learned model-based hash function (LMH)?

 Thank you!

