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Motivation + Summary

● Hash functions are used to store and retrieve data 
from a hash table; data ‘key’ is hashed and the value 
of the hash determines the position of the data in the 
table
○ Numerous applications and usages across 

computer science, particularly important for 
database management

● This work studies if using learned models instead of 
traditional hash functions can reduce collisions and 
whether this translates to improved performance, 
particularly for indexing and joins. They show that 
learned models reduce collisions in some cases, 
which depend on how the data is distributed.



Traditional Hash Functions

Traditional hash functions ℎ(𝑥) : 𝑋 ↦ 𝑈 attempt to map arbitrary inputs to independent and 
identically distributed (i.i.d.) uniform random outputs.

● True randomness is not feasible in practice
● Quality typically measured by number of collisions that occur (this affects the efficiency of 

insertion/queries/etc)
● Important that hashing operation is efficient

Examples of traditional hash functions:

● Multiplicative Hashing (MultiplyPrime)
● Fibonacci Hashing (FibonacciPrime)
● Murmur Hashing (Murmur)
● XXHash
● AquaHash



Learned models as hash functions

Idea: use a model F to approximate the CDF of the data (i.e. the keys) and use 
h(Key) = F(Key) * M as the hash function, where M is the size of the hash map

● If the model F perfectly learned the empirical CDF of the keys, 
no conflicts would exist.

● Model should be small and efficient to execute



Learned models as hash functions

Recursive model index (RMI) 
(Kraska et. al. 2018)

Objective:

● 2 layers of recursion used
● Linear models perform best



Learned models as hash functions

Piecewise Geometric Model index 
(PGM-index) (Vinciguerra et. al. 2019) and 
RadixSpline (Kipf et. al. 2020):

● Provide error-bounded 
approximations to the CDF 

○ PGM-index does this with 
recursive piecewise linear 
regression

○ RadixSpline does this via its 
spline-building algorithm

● Initialized with one pass through the 
data

○ PGM index work per element is 
logarithmic in number of layers

○ RadixSpline work per element is 
constant



Perfect Hashing

● Perfect hash functions: function is injective, mapping set of inputs into a range 
[0,N] (equivalently, the hash function achieves no collisions)
○ Minimal perfect: perfect + bijective (i.e. hash table has minimal size)
○ Order-preserving: order in the keys is preserved in the hashed values

● Building a MPHF requires knowing the dataset a-priori
● MPHF require O(n) time to build and are not easily updated, often requiring a 

full rebuild upon insertion
● Examples:

○ RecSplit (MPHF)
○ AWHC (OMPHF)



Hashing Schemes: Resolving Collisions

● Bucket chaining
● Open addressing

○ Linear probing
○ Cuckoo hashing



Collisions analysis for Hashing

● Notation: for the task of mapping 𝑁 keys to 𝑁 locations
● Assume that we apply a hash function 𝑓 on the keys, where 𝑓 could 

be a traditional hash or a LMH function. Let 𝑥_0,𝑥_1,...,𝑥_𝑁−1 be the 
sorted array
○ Let 𝑦_0,𝑦_1,...,𝑦_𝑁−1 be the sorted array of the hashing outputs 

𝑓(𝑥_0), 𝑓(𝑥_1),..., 𝑓(𝑥_𝑁−1). 
○ The gaps of the sorted output: 𝑔_0, 𝑔_1, 𝑔_2,... are defined as 

the difference between consecutive {y_i}



Collisions analysis for Hashing: Main lemma

● Main lemma states that: the expected number of colliding keys is 
expressed with PDF and CDF of the gap distribution.
○ LMH: more uniform gaps lead to fewer collisions.
○ Traditional Hash Functions: when distributing keys uniformly, are 

expected to create gaps following an exponential pattern, influencing 
collision rates.

● LMH Efficiency: Number of submodels in an LMH like RMI impacts 
accuracy but not necessarily collision rates.



Experiment evaluation

● Main goal: to validate what are the main workload characteristics, 
scenarios, and operations where employing LMH functions would 
improve performance?

● Comparisons conducted across 4 aspects
○ Collisions and computation time tradeoffs
○ Usability of basic operations (e.g. lookup and insertion)
○ Other systematic metrics, e.g. construction time
○ High-level operations (range queries and non-partitioned hash join)



Experiment evaluation: Setup

● Datasets
○ 4 Real dataset: Facebook user IDs (fb), Wikipedia edit timestamps (wiki), Open 

Street Map cell IDs (osm), and Amazon book popularity keys (book) from the SOSD 
benchmark, each with 200 million keys. 

○ 4 Synthetic dataset: Sequential keys with regular intervals and deletions (gap_10), 
uniformly random keys (uniform), and keys from normal and lognormal 
distributions.

● Metrics: computation throughput (operations per second) and collisions (proportion of 
colliding keys).

● Methods
○ Traditional Hash: Multiplicative Hashing (MultiplyPrime), Fibonacci Hashing 

(FibonacciPrime), Murmur Hashing (Murmur), XXHash, AquaHash
○ Learned Models: RMI, RadixSpline, PGM, perfect hashing: MWHC, RecSplit



Experiment evaluation: Collisions and computation time tradeoffs

●  Focus: the balance between hash function efficiency and quality!



Experiment evaluation: Hash Table Performance - Probing

● A main hash table operations: probing.



Experiment evaluation: Hash Table Performance - Insertion

● Another main hash table 
operation: insertion.



Experiment evaluation: High-level operation - Range queries

● How to implement ‘’range queries" 
using Hash tables?
○ “monotonic” LMH functions like 

RMI and RadixSpline can be 
combined with bucket chaining.



Experiment evaluation: High-level operation - Hash-based Join

● Non-Partitioned Hash Join (NPJ) 
is a method used in database 
management systems to join 
two tables.



Conclusion

● Gap Distribution: Evenly spaced gaps in sorted input keys result in fewer 
collisions for LMH functions.

● LMH Performance: RMI generally offers the best tradeoff between throughput and 
collision rates, while RadixSpline performance drops with skewed datasets.

● Hash Table Throughputs: LMH functions show improved probe and insert 
throughputs with bucket chaining; this advantage diminishes with cuckoo 
hashing.

● Mixed Workloads & NPJ: Monotonic LMH functions are effective for mixed 
workloads and NPJ when combined with bucket chaining, with RMI-CHAIN being 
the most efficient.



Future Work

● Multi-threaded implementations of LMH, perfect, and traditional 
hash tables have yet to be explored.

● Investigating complex models like decision trees and neural 
networks could reveal new efficiency tradeoffs.
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Discussion Questions

● Given that learned models can reduce collisions in hash functions for certain 
datasets, what are the potential benefits and challenges of integrating these 
models into traditional database systems?

● Besides training to approximate the CDF of the data, are there other objectives 
that could be used to train a learned model-based hash function (LMH)?



 Thank you!


