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• Policy-based methods with function approximation are 

widely used for solving two-player zero-sum games with 

large state and/or action spaces.

• However, it remains elusive how to obtain optimization and 

statistical guarantees for such algorithms.

• We present a new policy optimization algorithm with 

function approximation and prove that under standard 

regularity conditions on the Markov game and the function 

approximation class, our algorithm finds a near-optimal 

policy within a polynomial number of samples and 

iterations.

• To our knowledge, this is the first provably efficient policy 

optimization algorithm with function approximation that 

solves two-player zero-sum Markov games.

Abstract

Despite the large body of empirical work on using policy 

optimization methods for two-player zero-sum Markov games, 

theoretical studies are very limited.

Can we design a provably efficient policy optimization algorithm 

with function approximation for two-player zero-sum Markov 

games with a large state-action space?

We answer this question affirmatively!

• Two-Player zero-sum Markov Games

➢ a tuple 𝑀 = 𝒮, 𝒜, 𝒫, r, 𝛾 : A set of states 𝒮, a set of actions 𝒜, a 

transition probability 𝒫: 𝒮 × 𝒜 × 𝒜 → Δ(𝒮), a reward function 

r: 𝒮 × 𝒜 × 𝒜 → [0, 1], a discounted factor 𝛾 ∈ [0, 1).

➢ define policies as probability distributions over action space: 

𝑥, 𝑓 ∈ 𝒮 → Δ 𝒜 , max player 𝑥 seeks to maximize the reward 

while min player 𝑓 seeks to minimize.
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• This paper gave the first quantitative analysis of policy 

gradient methods for general two-player zero-sum Markov 

games with function approximation.

• We quantified the performance gap of the output policy in 

terms of the number of iterations, number of samples, 

concentrability coefficients, and approximation error. 

• An interesting direction is to extend our results to more 

advanced PG methods such as PPO.
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➢σ is the optimization measure we use 

to train the policy.

➢ρ is the performance measure of our 

interest.

𝑥∗, 𝑓∗ is a pair of Nash equilibrium (NE) if the following inequalities hold for any distribution 𝜌 and policy pair (𝑥, 𝑓):

𝑉𝑥,𝑓∗
𝜌 ≤ 𝑉𝑥∗,𝑓∗

𝜌 = 𝑉∗ 𝜌 ≤ 𝑉𝑥∗,𝑓(𝜌)

Our goal: find an approximate pair of Nash equilibrium, which means output 𝑥 should make 𝑉∗ 𝜌 − inf
𝑓

𝑉𝑥,𝑓 𝜌 small

We use concentrability coefficients as in the previous work [Perolat et al., 2015]. 

We divide each outer loop into two steps.

I. In Greedy Step, we intend to find approximate solution 𝑥, 𝑓  for Bellman operator 𝒯 onto current 

value function 𝑉𝑘−1 with 𝑇′ updates. (towards 𝑉∗)

II. In Iteration Step, we run 𝑇 NPG updates to solve arg min
𝑓

𝑉𝑥,𝑓 which is known as finding the best 

response of min player when fixing 𝑥 = 𝑥𝑘.

Theorem 1 (informal): For this setting, after K outer loops:

𝒯𝑥,𝑓𝑣 = 𝑟𝑥,𝑓 + 𝛾 𝒫𝑥,𝑓𝑣

𝒯𝑣 = sup
𝑥

inf
𝑓

𝒯𝑥,𝑓 𝑣

Online Algorithm with Function Approximation

• We still divide each outer loop into two steps. 
Assume Episodic Sampling Oracle to provide unbiased estimates or a fixed state-action distribution 𝜈0, we can start from 𝑠0, 𝑎0, 𝑏0 ∼ 𝜈0, then act 

according to any policy 𝑥, 𝑓, and terminate it when desired.

I. In Greedy Step, our goal is still to obtain a near-optimal 𝑥𝑘 with respect to 𝑉𝑘−1. Different from tabular case, we use sample-based NPG 

updates.

II. After obtaining 𝑥𝑘 from Greedy Step, we run 𝑇 sample-based NPG updates (each with N samples) to find best response of min player. 

Theorem 2 (informal): For this setting, after K outer loops:

𝐸 𝑉∗ 𝜌 − inf
𝑓

𝑉𝑥,𝑓 𝜌 = ෨𝑂
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