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Abstract

• In performative prediction, a predictive model impacts the distribution 

that generates future data, a phenomenon that is being ignored in classical 

supervised learning. 

• In this closed-loop setting, the natural measure of performance, 

performative risk (PR), captures the expected loss incurred by a predictive 

model after deployment. 

• Prior work has identified general conditions on the loss and the mapping 

from model parameters to distributions that implies the convexity of the 

performative risk. 

• In this paper, we relax these assumptions and focus on obtaining weaker 

notions of convexity, without sacrificing the amenability of the PR 

minimization problem for iterative optimization methods.

Setup

Problem
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Yulai Zhao

Generally, PR can not be optimized with no specific conditions. We are 
focusing on identifying these conditions and the extent to which the 
optimization is accessible. Specifically, we study how to optimize the 
performative risk through first-order information and analyze the 
suboptimality gap of performative risks.

How and Under what conditions could we optimize

the  performative risks? 

We answer this question affirmatively.

We aim to answer this question through two perspectives.

1. Validate several conditions in first-order optimization that could 
guarantee a linear convergence rate. Once recognizing such 
conditions, there are plenty implementations in literature. We pay 
special attention to an implication chain for smooth functions with 
Lipschitz-continuous gradients.

2. Connect the target performative optima points with stable points to 
take advantage of previous works.

Performative risk is introduced when prediction causes a change in the distribution of the target 
variable, i.e.,

𝐏𝐑 𝛉 = 𝐄𝐳∼𝐃(𝛉)𝐥 𝐳; 𝛉

⚫ Our ultimate goal is to find 𝜽𝒑𝒐 = 𝒂𝒓𝒈𝒎𝒊𝒏𝜽 𝑷𝑹 𝜽 , performative optima

⚫ However, past work mainly focused on finding

𝛉𝐩𝐬 = 𝐚𝐫𝐠𝐦𝐢𝐧𝛉 𝐄𝒛∼𝑫(𝜽𝐩𝐬)𝒍 𝒛; 𝜽 ,  which are called 

performative stable points

Example: predicting credit default risk. A bank might estimate that a loan applicant has an 
elevated risk of default if he applied for a loan, and will act on it by assigning a high interest 
rate. 

Results

1. Weak Strong Convexity for PR

2. Restricted Secant Inequality for PR

Define DPR(𝛉𝟏, 𝛉𝟐) = 𝐄𝐳∼𝐃 𝛉𝟏 𝐥 𝐳; 𝛉𝟐 for decoupled performative risk.

We show: when DPR is WSC (weakly strong convex), PR is WC (weakly convex) to 

𝜃𝑝𝑜, namely

𝐏𝐑 𝛉𝐩𝐨 ≥ 𝐏𝐑 𝛉 + ⟨𝛁𝐏𝐑 𝛉 , 𝛉𝐩𝐨 − 𝛉⟩

We show: when DPR is RSI (Restricted Secant Inequality), PR is RSI, namely

𝜵𝑷𝑹 𝜽 , 𝜽 − 𝜽𝒑𝒐 ≥ 𝝁′ 𝜽𝒑𝒐 − 𝜽
𝟐

1. Showing PL inequality for PR.

2. Understanding when and how (e.g., some structural properties of loss function 
or a natural set of distributions), it holds that 

𝑊 𝐷 𝜃 ,𝐷 𝜃′ ≤ 𝐶 || ∇𝜃′𝐷𝑃𝑅 𝜃, 𝜃′ ||2

Such a condition characterizes local properties of DPR  near  performative 
stable   points, it could be more common.

3. What is the impact of data pre-processing steps on the implications of 
performative shifts?  

Open Problems

Methodology

• There are various works in the optimization literature that aim to relax the 

strong-convexity on the objective function while maintaining favorable 

convergence properties. Examples include error bounds (EB), essential 

strong convexity (ESC), weak strong-convexity (WSC), restricted secant 

inequality (RSI), restricted strong-convexity (RSC), Polyak-Lojasiewicz

(PL) inequality and quadratic growth (QG) condition.

• We build on this work to analyze performative prediction from an 

optimization perspective. 
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