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• Pre-training refers to training a model on a few or many tasks to help it learn 

parameters that can be used in other tasks. 

• We present a new statistical analysis aiming to explain the recent superior 

achievements of the pre-training techniques in natural language processing 

(NLP).

• We prove that when the classes of the pre-training task (e.g., different words 

in the masked language model task) are sufficiently diverse, in the sense that 

the least singular value of the last linear layer in pre-training is large, then pre-

training can significantly improve the sample efficiency of downstream tasks.

• Our proof relies on a vector-form Rademacher complexity chain rule for 

disassembling composite function classes and a modified self-concordance 

condition. These techniques can be of independent interest.
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• We formally prove the benefit of multi-class pre-training using the notion of class diversity.

• Our proof uses the vector-form Rademacher complexity chain rule and a modified self-

concordance condition.

Future Work

Our work is based on realizability assumptions (cf. Assumption 3.1 and 3.2) that are 

commonly adopted in transfer learning and classical PAC learning framework. We believe 

our theorems can be extended to agnostic versions by relaxing these assumptions.

 If the target task is well-aligned with the source tasks, one can define more fine-grained 

notions to capture the task relevance.

 Based on the techniques presented by this work, develop theories that could explain some 

more recent pre-training algorithm showing that one can do pre-training with the 

downstream dataset itself, and still get good results. Direct application of the transfer 

learning scheme is precluded in such setting.
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This work is in line with previous transfer learning theories (Du et al., 2021; Tripuraneni et al., 

2020) that first pre-train on a large corpus to get a good representation, which, could be 

future utilized by various downstream tasks. Formally, the procedure is divided into two stages: 

the pre-training stage to find a representation function and the downstream training stage to 

obtain a predictor for the downstream task.

◆ In the first stage, we have one pre-training task with n samples, 𝑥𝑖
𝑝
, 𝑦𝑖

𝑝

𝑖=1

𝑛
, where 𝑥𝑖

𝑝
∈ 𝑋𝑝 ⊂

𝑅𝑑 is the input and 𝑦𝑖
𝑝
∈ 0,1 𝑘−1 is the one-hot label for k-class classification. 

➢ We aim to obtain a good representation function ℎ within a function class       𝐻 ⊂ {𝑅𝑑 →
𝑅𝑟} where 𝑟 is the embedding dimension (often equals to 768, 1024, 2048 in NLP pre-

training).

➢ For example, one popular choice of the representation function ℎ in NLP applications is 

the Transformer model and its variants (Vaswani et al., 2017; Devlin et al., 2019). On top of 

the representation, we predict the labels using function 𝑓𝑝 within 𝐹𝑝 ⊂ {𝑅𝑟 → 𝑅𝑘−1}.

➢ To train the representation function and predictor in pretraining stage, we consider the 

Empirical Risk Minimization (ERM) procedure
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◆ In the second stage, we assume there are m samples 𝑥𝑖
𝑑 , 𝑦𝑖

𝑑
𝑖=1

𝑚
, where 𝑥𝑖

𝑑 ∈ 𝑋𝑑 ⊂ 𝑅𝑑 is the 

input and 𝑦𝑖
𝑑 ∈ 0,1 𝑘′−1 is the one-hot label for 𝑘′ -class classification. 

➢ In most real-world applications, 𝑛 ≫ 𝑚 𝑎𝑛𝑑 𝑘 ≫ 𝑘 ′, e.g. sentiment analysis.

➢ For the downstream task, we fix the representation function learned from the pre-training 

task and train the task-dependent predictor within 𝐹𝑑 ⊂ {𝑅𝑟 → 𝑅𝑘
′−1}.
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◆ To this end,  we finally obtain a predictor and a representation. We use the following risk to 

measure the performance of predictor and representation

E𝑥𝑑,𝑦𝑑 𝑙 መ𝑓𝑑 ∘ ℎ 𝑥𝑑 , 𝑦𝑑 − E𝑥𝑑,𝑦𝑑 𝑙 𝑔
𝑑 𝑥𝑑 , 𝑦𝑑 , 

where 𝑔𝑑 is the optimal predictor for the downstream.

We call this term Transfer Learning Risk, which serves as the main objective to be minimized 

during the optimization process. 

Assumptions and Definitions

➢ Throughout the paper, we make the following realizability assumption, which is also a 

standard assumption in the classical PAC learning

➢ We make the following assumption on both pre-training and downstream tasks to describe 

how the underlying data are generated

➢ To measure the “closeness” between the learned representation and true underlying 

feature representation, we use the following metric, following Tripuraneni et al. (2020)

➢ For transfer learning, we also need to introduce a similar concept on the downstream task. 

➢ Finally, we introduce the key notion of diversity, which measures how well a learned 

representation, say ℎ′, from the pre-training task can be transferred

One of our key technical contribution is to show the least singular value of the last linear layer 

serves as a lower bound of the diversity, when predictors are linear.
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Blessing of Class Diversity in Pre-training

◆First, we present our generic end-to-end transfer learning guarantee for multi-class transfer 

learning problems. We only impose the following mild regularity assumptions to ensure the 

bounds are general.

Assumption 4.1 (Regularity Conditions)

1. In pre-training, loss 𝑙 is 𝐵𝑝-bounded and 𝑙 ⋅, 𝑦 is 𝐿𝑝-Lipschitz for any 𝑦.

2. In downstream task, loss 𝑙 is 𝐵𝑑-bounded and 𝑙 ⋅, 𝑦 is 𝐿𝑑-Lipschitz for any 𝑦.

3. Any pre-training predictor 𝑓 ∈ 𝐹𝑝 is 𝐿(𝐹𝑝)-Lipschitz.

4. Bounded predictors: || 𝑓 ∘ ℎ 𝑥 || ≤ 𝐷𝑋𝑝 , ∀ 𝑥 ∈ 𝑋𝑝, ℎ ∈ 𝐻, 𝑓 ∈ 𝐹𝑝. Similarly, the following holds: 

|| 𝑓 ∘ ℎ 𝑥 || ≤ 𝐷𝑋𝑑 , ∀ 𝑥 ∈ 𝑋𝑑 , ℎ ∈ 𝐻, 𝑓 ∈ 𝐹𝑑

Under the assumptions, for a given fixed failure probability 𝛿, with probability at least 1 − 𝛿, 

we have the Transfer Learning Risk bounded by

◆We then proceed to the setting that is of most interest to NLP pre-training, where the loss 

functions are cross-entropy and the 𝐹𝑝, 𝐹𝑑 are sets of linear functions. Assume we have a 

necessary assumption that enables us to relate the diversity parameter with concrete 

quantity in the network

Intuitively, this assumption ensures that the pre-training task matrix spans the entire

r-dimensional space and thus covers the output of the optimal representation ℎ ⋅ ∈ 𝑅𝑟.

Under the assumptions, for a given fixed failure probability 𝛿, with probability at least 1 − 𝛿,     

we have the Transfer Learning Risk bounded by

◆ To get a better impression of this bound, we instantiate the quantities in a specific setting, in 

which not only the predictors, but the underlying representation is also linear, i.e., ℎ 𝑥 =
𝐵⊤𝑥, 𝐵 ∈ 𝑅𝑑×𝑟 .

Under several assumptions, for a given fixed failure probability 𝛿, with probability at least 

1 − 𝛿, we have the Transfer Learning Risk bounded by

To interpret this bound, consider the practically relevant scenario where k′ = O(1) (e.g., 
sentiment analysis), 𝑚, 𝑘 ≪ 𝑛, r ≪ 𝑑 , and in the benign case 𝜈 = Ω 𝑘 , the risk simplifies to 

෨𝑂
𝑑𝑟2

𝑛
+

𝑟

𝑚
, the first term accounts for using all pre-training data to learn the

representation function and the second term accounts for using the downstream data to 

learn the last linear layer. This is significantly better than not using pre-training, in which case 

the risk scales as 𝑂
𝑑

𝑚
. The improvement showcases the power of pre-training.

CONCLUSIONS
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