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Iterative Magnitude Pruning

This study extends the comparative analysis of various
neural network pruning techniques—specifically SNIP [2],
GraSP [4], SynFlow [3], random pruning, and magnitude
based pruning—by integrating modern evaluation
meftrics and infroducing an iterative pruning method,
Iterative Magnitude Pruning (IMP) [1].

Our objectives are to enhance the understanding and
efficiency of these techniques for more effective neural
network model development.

We implemented IMP to evaluate its theoretical
effectiveness and incorporated additional metrics such
as CPU memory usage, GPU allocation, and cache
memory fracking.

Our comparative analysis across different compression
levels reveals that iterative pruning methods like IMP
tend to outperform one-shot approaches. Furthermore,
initial results suggest that each one-shot pruning
method presents distinct advantages and limitations.
This comprehensive assessment aids in identifying
optimal pruning strategies for various network
architectures and applications..

Iterative Magnitude Pruning (IMP) [1] is a neural network
pruning technique that employs an iterative process to
re move weights based on their magnitudes. It seeks to
identify a sparse but capable subnetwork that, when
trained from the beginning, could match or surpass the
performance of the unpruned network. IMP is inspired by
the Lottery Ticket Hypothesis, which suggests that
effective subnetworks can exist within randomly
initialized networks.

IMP differs significantly from traditional one-shot pruning
methods. While one-shot pruning involves removing @
pre determined percentage of weights based solely on
a single pass or criterion (such as weight magnitude),
IMP applies a more nuanced approach. It uses multiple
iterations of pruning followed by fraining, where each
cycle aims to eliminate a fixed percentage of the
smallest weights and then retrain the network to regain
performance. This methodical reduction
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and fraining process allows IMP to refine the network’s
stfructure iteratively, enhancing its ability to maintain or
Improve performance despite increased sparsity.

« This cyclic nature of IMP is crucial for its success. It allows

the network to adapt gradually to the loss of weight,
which can prevent the significant performance
degradation often ob served with one-shot pruning
methods after aggressive weight removal. By
confinuously adjusting and retraining, IMP can discover
more efficient and robust network configurations
capable of achieving similar or even superior

performance compared to the original unpruned model.

Compression Rand Mag SNIP GraSP SynFlow

0.05 88.08 88.69 88.20 79.03 88.05
0.1 87.51 89.47 88.17 72.34 88.16
0.2 88.16 89.36 87.87 78.87 88.50
0.5 86.80 89.95 88.55 80.86 87.14
1 10.00 88.88 87.77 81.46 87.83
2 10.00 42.61 81.55 82.72 10.00

Compression IMP (2 Iters) IMP (3 Iters) IMP (4 Iters)

0.05 88.56 88.65 89.81
0.1 89.15 88.65 89.06
0.2 88.84 89.20 89.69
0.5 89.14 89.37 88.94
1 89.52 89.57 89.80
2 81.60 1537 19.34

Table 1: We present the top-1 testing accuracy of a VGG16
model on CIFAR-10 across various compression ratios, com-
paring one-shot pruning methods (Rand, Mag, SNIP, GraSP,
SynFlow) with Iterative Magnitude Pruning (IMP) over 2, 3,
and 4 iterations. IMP consistently outperforms other methods,

especially at higher compression levels, demonstrating its su-

perior ability to maintain accuracy while reducing model size.

Compression Rand Mag SNIP GraSP SynFlow

0.05 0.653 0.630 0.704 0.598 0.617
0.1 0.705 0.676 0.606 0.621 0.620
0.2 0.631 0.637 0.600 0.618 0.682
0.5 0.693 0.639 0.602 0.618 0.603

1 0.606 0.604 0.606 0.613 0.610
2 0.621 0.602 0.668 0.627 0.618

Compression  IMP (2 Iters) IMP (3 Iters) IMP (4 Iters)

0.05 0.743 0.700 0.689
0.1 0.646 0.634 0.653
0.2 0.638 0.655 0.666
0.5 0.740 0.672 0.641

1 0.649 0.698 0.641
2 0.638 0.653 0.667

Table 2: Inference time in seconds for a VGG16 model on
CIFAR-10 across varying compression ratios using differ-
ent pruning methods, including one-shot (Rand, Mag, SNIP,
GraSP, SynFlow) and iterative (IMP) approaches. IMP consis-
tently shows optimized inference times, particularly at higher
iterations, which highlights its efficiency in streamlining net-
work operations post-pruning.

Compression  Rand Mag SNIP  GraSP  SynFlow

0.05 0.8916 0.9477 0.9377 0.8201 0.9488
0.1 0.7945 0.8991 0.9268 0.7295  0.9026
0.2 0.6310 0.8151 0.7812 0.5711 0.8217
0.5 0.3165 0.5634 0.4622 0.3781 0.6423
1 0.1009 0.2283 0.1979 0.1751 0.4571
2 0.0108 0.0322 0.0411 0.0586  0.1845

Compression IMP (2 Iters) IMP (3 Iters) IMP (4 Iters)

0.05 0.9290 0.9256 0.9229
0.1 0.8655 0.8612 0.8560
0.2 0.7564 0.7505 0.7414
0.5 0.5189 0.5125 0.5115

1 0.2134 0.2193 0.2280
2 0.0286 0.0245 0.0239

Table 3: Sparsity ratios of a VGG16 model using various

pruning techniques at different compression levels. The ratios,

calculated as the fraction of remaining FLOPs relative to the
original model’s 313,478,154 FLOPs, indicate the efficiency
of each method in reducing computational complexity. IMP

Iterative Magnitude Pruning) shows a consistent and signifi-

cant increase in sparsity with more iterations, highlighting its
effectiveness in achieving higher computational savings.

Compression Rand Mag SNIP GraSP SynFlow

0.05 10,0 9.8 16.0 16.1 9.5
0.1 10.1  10.0 13.0 13.0 9.5
0.2 10,0 100 9.8 13.0 9.5
0.5 10.0  10.1 9.8 9.8 9.5
1 10.0 9.8 9.8 9.5 9.5
2 10.0 9.8 9.8 9.5 9.5

Compression  IMP (2 Iters) IMP (3 Iters) IMP (4 Iters)

0.05 9.8 9.8 9.8
0.1 9.8 9.8 9.8
0.2 9.8 9.8 9.4
0.5 94 9.4 94

1 94 94 94
2 9.4 9.4 9.4

Table 4: Maximum CPU memory consumption (in GBs) re-
quired for inferencing on the test set using variously pruned
VGG16 models at different compression levels. The data
demonstrates how iterative pruning (IMP) maintains consis-
tent and lower memory usage across iterations compared to
one-shot methods
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Figure 1: Comparative visualization of weight distributions
across various pruning techniques for a VGG16 model
trained on CIFAR-10, targeting 50% compression. The plots
demonstrate distinct sparsity patterns: Random (Rand) and
Magnitude-based (Mag) pruning show less strategic weight
removal than structured approaches like SNIP, GraSP, and
SynFlow, which more aggressively prune the later layers. It-
erative Magnitude Pruning (IMP) over multiple iterations (2
to 4 Iters) refines sparsity, progressively concentrating weight
reductions in the final layers. This suggests an adaptive focus
on maintaining early layer density for feature extraction while
optimizing later layers for decision-making efficiency.

Main Results (Cont'd)

Compression Rand Mag SNIP GraSP SynFlow

0.05 0.375 0376 0.437 0378 0.374
0.1 0.375 0376 0.437 0378 0.374
0.2 0.375 0.376 0.437 0378 0.374
0.5 0.375 0376 0.437 0.378 0.374
1 0.375 0376 0.437 0378 0.374
2 0.375 0376 0.437 0.378 0.374

Compression IMP (2 Iters) IMP (3 Iters) IMP (4 Iters)

0.05 0.494 0.495 0.497
0.1 0.499 0.499 0.498
0.2 0.494 0.499 0.494
0.5 0.497 0.499 0.497

1 0.497 0.499 0.497
2 0.494 0.496 0.498

Table 5: Maximum GPU memory allocation in GBs for in-

ferencing on the CIFAR-10 test set using VGG16 models

pruned via various techniques at different compression ratios.

Compared to one-shot pruning methods, IMP demonstrates
higher memory efficiency, particularly at finer iterations.

Compression Rand Mag SNIP GraSP SynFlow

0.05 1.124 0937 1.097 1.267 1.114
0.1 1.124 0937 1.097 1.267 1.114
0.2 1.124 0937 1.097 1.267 1.114
0.5 1.124 0937 1.097 1.267 1.114

1
2

24 0937 1.097 1.267 1.114
24 0937 1.097 1.267 1.114

Compression IMP (2 Iters) IMP (3 Iters) IMP (4 Iters)

0.05 1.277 1.277 1.277
0.1 1.277 1.277 1.277
0.2 1.277 1.140 1.277
0.5 1.140 1.277 1.277
1 1.141 1.141 1.277
2 1.277 1.277 1:277

Table 6: Maximum GPU memory cached for inferencing on
the CIFAR-10 test set with VGG 16 models pruned at various
compression ratios.

Conclusion

« Qur comparative study underscores the superiority of
iterative pruning over fraditional one-shot methods.

* IMP retains model accuracy, reduces inference times,
and optimizes memory consumption across both CPU
and GPU, making it a robust solution for enhancing the
operational efficiency of deep neural networks.

 This study highlights the potential of iterative pruning
techniques in advancing the SOTA model compression,
offering significant benefits for real-world applications
where efficiency and performance are critical.
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